High-pressure, oxygen-rich environments increase risk of a metal-fire in the ox-rich turbopump of a staged combustion rocket engine. A triple-phase composite environmental barrier coating (EBC) has shown to provide resistance to particle-impact ignition, a dominant failure mode in the turbine of these turbopumps.

II. Background

Thermal transients at engine start-up and shut-down can cause the coating to delaminate.

III. EBC Deposition and Preferential Etching

A. EBC Deposition

- Add 1 part distilled water to a plastic bottle.
- Add 20 g of FeCl$_2$ powder in a separate dry container.
- Use a plastic spoon to add small portions of the powder into the water bottle.
- Stir to dissolve the solution as you add more FeCl$_2$ powder.
- Let the solution cool down and dip the EBC pellet for 96 hours after immersing it in the solution.

B. EBC Preferential Etching

- Step 1: Add 100 mL of distilled water to a plastic bottle.
- Step 2: Add 50 g of FeCl$_2$ powder in a separate dry container.
- Step 3: Use a plastic spoon to add small portions of the powder into the water bottle.
- Step 4: Stir to dissolve the solution as you add more FeCl$_2$ powder.
- Step 5: Let the solution cool down and dip the EBC pellet for 96 hours after immersing it in the solution.

IV. EBC Thermal Cycling Rig Design

Purpose: Subject an EBC-coated disk specimen to the thermal cycling conditions of a reusable rocket engine.

- The sample, mounted at one end of a tubular steel arm, is rotated between a liquid nitrogen (LN) container and flame torch.
- Hot flame subjects the sample to a hot-shock that simulates the start-up of the engine.
- LN reproduces cold shock conditions at shut down.
- A step-servo motor and gear-box assembly is used to actuate the rig.
- A programming code specifies the motion profile that replicates rocket engine thermal transients.

V. Conclusions

- Deposited protective EBC of thicknesses greater than 50 µm using multiple coating deposition cycles.
- Interpenetrating phase structure revealed by etching indicates presence of ductile-toughening effect in the EBC.
- Designed a rig to test EBC coated IN718 samples under thermal cycling conditions of a reusable rocket engine.

VI. Future Work

- Conduct thermal shock experiments in the final setup until simulating 1000 flights.
- Install a gear box in the thermal shock rig system in order to fix the inertial mismatch between the motor and the load (rig and EBC specimen).
- Identify the optimal angle and speed to submit the EBC sample into thermal shock.
- Characterize the EBC sample to further assess its performance throughout thermal cycling.
- Identify a method that prevents oxidation between the metal-ceramic-glass composite coating, Ni bond-coat, and IN718 sample.

VII. Acknowledgements

I would like to extend my gratitude to the M.I.T. Summer Research Program (MSRP), my PI (Dr. Zachary Cordero), my research supervisors (Dr. Ishay Gupta and Spencer Taylor), and the Aeronautics and Astronautics Department at M.I.T. for providing me unconditional support and guidance throughout the completion of my research project.

VIII. References