Rapid Compact Optical Shutter: Using Dc Motor And 3d Modeling To Bring Affordability And Reliability To Precision Spectroscopy

Wisdom Boinde1, Eugene Knazyev2, Joonseok Hur2, and Vladan Vuletic2
1Department of Physics,Earlham College
2Department of Physics,Massachusetts Institute of Technology

BACKGROUND

- Shutters come in diverse features and are ubiquitous in laser-based experiments.

 - Acousto-optical modulator
 - Laser Safety (Interlock) Shutter
 - Electric Fast Shutter

 - A close example is using a shutter in precision spectroscopy to improve the efficiency of ion transitions after it has been trapped.

 - Relevant features: lifespan, activation delay, switching time, and jitter.

 - Commercially available shutters are expensive and in general not the best in some combination of high vibration, low pulse rate, or large size.

 - So, experimenters frequently construct their own shutters based on desired features.

 - Goal: Design, print out, assemble, and troubleshoot the shutter driver and body to directly replace the old shutter system of the Ion lab in the CUA of MIT.

 - Long lifespan, ~1ms activation delay, ~1.5ms switching time, and no observable jitter.

METHODS

- Comprehend existing driver design
- Assemble components and build driver
- Build support circuits to assist driving and testing
- Trouble shoot and replace components as needed
- 3d design and print shutter body and blade
- Complete shutter assembly
- Test using oscilloscope
- Perform experimental test.
- Optimize

The Schematics for the circuit that drives the motor offers the bases of the PCB design.

The shutter body and blade 3D designed and printed.

RESULTS

- Current into the motor
 - The presence of the capacitor to enhance switches in directions of the blade
 - Each enhanced switch is followed by a kick by current from the capacitor as we can see the slope corresponding to charging and discharging

- Activation delay for 0.15in aperture
 - Activation delay ~2.1ms
 - Switching time is the time it takes 20% after a response to 80%.
 - Switching time ~ 0.4ms
 - No observable jitter (changes in periodic motion of shutter)

- 0.098in shutter aperture
 - Activation delay is the time difference between an initiated signal and a response.
 - The smaller the activation delay time, the preferable in precision experiments.

- Activation delay of ~2.1ms

WHAT'S NEXT: Slower Activation Delay Time

- At present, even though the shutter built is sufficient for precision spectroscopy, the activation delay limits the ability of the shutter to work with narrower pulses.

- In a long run, the activation delay needs to be reduced to at least 1ms for the shutter to be very effective in spectroscopy experiments.

- From the data of the current through the motor, the insignificant delay in kick foreshadows further research on the DC motor response time.

- A running average of the activation delay in main experimental setup-0.098in
 - Open signal delay time ~3.5ms
 - Close signal delay time ~2ms

CONCLUSIONS

- Within the parameters of the experimental test on V/h
 - The activation delay time is sufficient for the experimentation with an average value of ~2.8ms.
 - The switching time is small enough (< 1ms) to not affect the rate of cadence of the blade.
 - From video evidence, the motion of the blade experiences no observable jitter.

REFERENCES

