MIT Department: Chemistry
Undergraduate Institution: Vassar College
Faculty Mentor: Timothy Swager
Research Supervisor: Maggie He, Suchol Savagatrup
Website: LinkedIn
.
Biography
My name is Lisa Je and I am from Brooklyn, New York. I am a Dual Degree Engineering student at both Vassar and Dartmouth College. My love for chemistry began with the aromas of my mother’s cooking wafting into my brain and I pursued these aromatics and their functions in organic chemistry. While studying chemical engineering, I am highly interested in physics, math and gender studies. My future goals are to pursue a PhD in chemical engineering so that I can have the ability to help mentor others in my community as a professor. My research interests are (but not limited to) electrical-chemical sensors, batteries and renewable energies. In my free time, I embrace the beauty of my family’s heritage with chemistry in the kitchen (cooking).
2017 Poster Presentation
2017 Research Abstract
Multimodal Carbon Nanotube-based Sensors with Tunable Sensitivity for Nitric Oxide and
Carbon Monoxide Detection
Lisa Je, Department of Chemistry, Vassar College and Department of Engineering — Thayer School of Engineering, Dartmouth College
Suchol Savagatrup, Department of Chemistry, Massachusetts Institute of Technology
Maggie He, Department of Chemistry, Massachusetts Institute of Technology
Timothy Swager, Department of Chemistry, Massachusetts Institute of Technology
Detecting greenhouse gases such as nitric oxide (NO) and carbon monoxide (CO) is important for monitoring their influences on human and environmental health. Single walled carbon nanotubes (SWCNTs), which are individual rolls of graphene sheets, are viable components of chemical sensors. They are inexpensive to fabricate, functional at room temperature, and operational at low power. We aim to develop a field-effect transistor (FET) chemical sensor based on covalently functionalized SWCNTs to uniquely sense NO and CO via the modulation of voltage between the transistor’s gate and source [Figure 1]. The FET gate voltage will be manipulated to switch the oxidation state of copper (Cu) on the functionalized SWCNT to sense NO and CO seen through a change of induced current (ΔG/G0). NO will bind to the sensor at the Cu (II) state and CO to Cu (I) state. We synthesized multiple ligands to covalently functionalize onto the SWCNTs to create selectivity of multiple gases on a single sensor. We observed improved sensitivity to NO in functionalized SWCNT (ΔG/G0 = 20%) over the controls. Furthermore, Cu infusion and covalent functionalization improve the NO sensitivity via the coordinate ion selected as well as steric factors of the ligand. The proposed device will also aid in the future development of other sensors due to the comparable size and compatibility between other nanoelectronics and biological nano-assemblies.
Figure 1. A field-effect transistor (FET) schematic with source, drain and gate electrodes. These FET devices are drop casted with functionalized single walled carbon nanotubes (F-SWCNTs) and treated with a copper complex infusion.