Weintraub: Mapping the 3-D structure of DNA


November 6, 2015

abe weintraub dna

For graduate student Abe Weintraub, the magic and intrigue of DNA is all in the packaging. Imagine trying to fit 24 miles of string into a tennis ball, the PhD student in biology says: That is, in essence, what it’s like inside every cell nucleus in the human body, each of which contains about 2 meters’ worth of DNA strands. But, as Weintraub is finding, this packaging sometimes goes awry, which may be the basis for disease.

Although the genetic code that resides in DNA has traditionally been thought of as linear, Weintraub is contributing to a body of knowledge about its 3-D organization. Two genes that may exist far apart when a strand is stretched out straight could actually be right next to each other when the strand is folded inside a cell nucleus — and the same applies to regulatory elements, which tell genes to turn on or off.

Looking at DNA as a 3-D phenomenon may yield insights about how certain genes get turned on or off, and thus how cells differentiate — in other words, DNA’s 3-D structure might actually be what’s behind one cell becoming a skin cell, while another becomes a lung cell. Weintraub has now been part of the lab of Richard Young, a professor of biology, for one and a half years; his research began in figuring out how DNA gets folded up the way it does, and has more recently shifted to the consequences of improper folding.  Read more

Leave a Reply

Your email address will not be published. Required fields are marked *