Kotru develops approach to small, stable atomic clocks


November 20, 2014

A group at MIT and Draper Laboratory has come up with a new approach to atomic timekeeping that may enable more stable and accurate portable atomic clocks, potentially the size of a Rubik’s cube. The group has outlined its approach in the journal Physical Review A. While chip-sized atomic clocks (CSACs) are commercially available, the researchers say these low-power devices — about the size of a matchbox — drift over time, and are less accurate than fountain clocks, the much larger atomic clocks that set the world’s standard. However, while fountain clocks are the most precise timekeepers, they can’t be made portable without losing stability.

“You could put one in a pickup truck or a trailer and drive it around with you, but I’m guessing it won’t deal very well with the bumps on the road,” says co-author Krish Kotru, a graduate student in MIT’s Department of Aeronautics and Astronautics. “We have a path toward making a compact, robust clock that’s better than CSACs by a couple of orders of magnitude, and more stable over longer periods of time.” Continue reading on MIT News.

Leave a Reply

Your email address will not be published. Required fields are marked *