McGovern study shows forward osmosis desalination not energy efficient


September 2, 2014

OsmosisResearch

In a recent study published in the Journal of Membrane Science, MIT professor John Lienhard and postdoc Ronan McGovern (former Hugh Hampton Young Fellow), both of the Department of Mechanical Engineering, reported that, contrary to popular support, forward osmosis desalination of seawater is significantly less energy efficient, compared to reverse osmosis.

In forward osmosis, water is drawn from the seawater into a concentrated salt solution, known as a draw solution. Then, a second step is required to regenerate the concentrated draw solution and produce purified water. With reverse osmosis, the seawater is directly desalinated by being pressurized and driven through a membrane that only allows water to pass through.

McGovern, performed an energetic comparison of reverse osmosis and forward osmosis to identify their respective energy consumptions. The problem, he says, is that even if the second step of draw regeneration — in which the concentrated salt solution is dewatered, producing fresh water — can achieve the same level of efficiency as the reverse osmosis process, the actual energy consumption of forward osmosis will consistently surpass that of reverse osmosis. This is because the salt solution that results from the first step of forward osmosis is necessarily more highly concentrated than standard seawater, meaning it always requires a higher level of energy for regeneration. Full article at MIT News

Leave a Reply

Your email address will not be published. Required fields are marked *